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We numerically study the static structure and the mechanical response of two-dimensional granular piles.
The piles consist of polydisperse disks with and without friction. Special attention is paid to the rigid grain
limit by examining the systems with various disk elasticities. It is shown that the static pile structure of
frictionless disks becomes isostatic in the rigid limit, while the isostaticity of the frictional pile depends on the
pile forming procedure, but in the case where the infinite friction is effective, the structure becomes very close
to isostatic in the rigid limit. The mechanical response of the piles is studied by infinitesimally displacing one
of the disks at the bottom. It is shown that the total amount of displacement in the pile caused by the
perturbation diverges in the case of the frictionless pile as it becomes isostatic, while the response remains
finite for the frictional pile. In the frictionless isostatic pile, the displacement response in each sample behaves
in a rather complicated way, but its average shows wavelike propagation.
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I. INTRODUCTION

A pile of granular material is often modeled as an assem-
bly of rigid particles. This simple picture, however, causes
some conceptual difficulties when one considers the force
distribution, or stress, in the pile.

In an ordinary solid that consists of atoms, which are
deformable elements, the stress inside is determined by the
stress balance equations with the constitutive relation be-
tween the stress and strain. No deformation is allowed, how-
ever, in rigid elements, in which case the forces acting on
each element should be determined only from the structure
of the contact network. This is not possible in general.

There is a special class of stable pile structures called
isostatic, or marginally rigid: A pile structure is isostatic
when the forces acting between the elements are uniquely
determined only from externally applied forces and the pile
structure without any information on the deformation of the
elements. For such a pile, the total number of balance equa-
tions for the forces and torques acting each particle should be
equal to the number of independent components of forces.
This condition leads to the requirement that the average
number of particles in contact with each particle in a pile, or
the average coordination numberz, should take a specific
value. In the case of frictionless spherical grains, this be-
comesz=2d for d dimensions because the contact forces
always point to the center of particle, and thus the torque
balance equations are satisfied. Therefore, the number of in-
dependent force componentszN/2 should be equal to the
number of force balance equations,dN, with N being the
total number of particles. In the case of the frictional pile of
both spherical and nonspherical grains, we havez=d+1 be-
cause the number of independent force components is now
zdN/2, and this should be equal to the sum of the number of
force balance equations,dN, and that of torque balance equa-
tions,dsd−1dN/2.

In a real pile of hard grains the isostaticity is not always
satisfied; in the overconstrained case, where the number of
conditions is larger than the number of forces, the pile is

unstable because there are no sets of force that satisfy the
balance equations. On the other hand, in the undercon-
strained case, where the number of conditions is smaller than
the number of forces, the forces cannot be determined
uniquely from the macroscopic structure information of the
pile; the macroscopic friction force depends on the piling
history. It has been conjectured, however, that a stable pile of
frictionless rigid particles forms an isostatic structure[1].

The isostaticity of a pile structure has been tested numeri-
cally and experimentally for both the frictionless and fric-
tional cases by counting the coordination numbers. Makseet
al. [2] have performed numerical simulations for three-
dimensional sphere systems without gravity and made com-
pact aggregates of balls by compressing the systems by push-
ing the surrounding walls. By examining the coordination
numbers in the zero-pressure limit, they concluded both the
frictionless and frictional sphere systems become isostatic in
the rigid limit. On the other hand, Silbertet al. [3] have also
performed numerical simulations on the three-dimensional
sphere system, but the way they made piles is different from
that of Makseet al.They released the particles in the system
at once under gravity and waited until all the particles
stopped. Their conclusion is that the frictionless pile be-
comes isostatic in the rigid limit, but the structure of the
frictional pile depends on the piling procedure and never
becomes isostatic. Ball and Blumenfeld[4,5] have done
simple tabletop experiments on the pile of two-dimensional
noncircular grains made of cardboard. Piles are formed by
collecting the grains scattered initially on a horizontal sur-
face by sliding an open rectangular frame. They found that
the higher the starting density of grains is, the more coopera-
tive reconfiguration is taken place before they are stuck with
each other and the lower the ending pile density. They have
concluded that the isostatic structure of frictional grains is
achieved in the limiting case where the starting and ending
densities coincide.

The isostatic structure, if it is realized in a real pile,
should be reflected in the mechanical properties of the rigid
granular pile. The mechanical properties of frictionless
isostatic structure have been studied in some detail, and it
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has been shown that(i) the force chain may be regarded as
propagating unidirectionally[6], (ii ) there is a correspon-
dence between the force-force response and the
displacement-displacement response[7], and (iii ) the piles
are very sensitive to an external perturbation[1,8]. These
features may correspond to some properties of a smooth hard
granular pile.

Regarding the mechanical response of the isostatic pile,
using a simple lattice model of isostatic structure, Moukarzel
[1] has shown that the total response to an external perturba-
tion diverges as the system approaches isostaticity due to the
“pantograph effect” and statistical fluctuation is very large
[8]. As for the effects of friction, Moukarzelet al. [9] have
performed experiments on the two-dimensional rigid disk
system and demonstrated that the displacement response
function has the single-peak Gaussian shape with diffusive
broadening. They also performed computer simulations on
the two-dimensional frictionless disk system and showed that
the displacement response function has a double-peaked
shape with wavelike propagation, suggesting that friction
plays an important role in the mechanical response.

The purposes of the present work are to clarify if pile
structure becomes isostatic in the rigid grain limit and to
examine the mechanical response of the isostatic pile. We
present detailed results of our numerical simulations[10] on
the two-dimensional frictionless and frictional disks. We par-
ticularly focus on the following questions:(i) whether the
pile structure become isostatic in the rigid limit,(ii ) how it
depends on pile forming procedure,(iii ) what role the grain
friction plays, (iv) how the mechanical response of pile
changes as it becomes close to isostatic, and(v) how the
average response is different from individual ones. After in-
troducing the model and piling procedures in Sec. II, we
present the results for the static pile structure for frictionless
and frictional disks in Sec. III. The mechanical responses are
investigated in Sec. IV. The summary of our results is given
in Sec. V.

II. MODEL

We perform molecular dynamics simulations on a system
that consists of two-dimensional disks with linear elasticity
and damping, which is usually called the DEM(discrete el-
ement method) in the engineering community. The system is
polydisperse with a uniform distribution in the disk diameter
over the range between 0.9s0 and s0, with s0 being the
maximum diameter. The masses of the disks are assumed to
be proportional to their areas: the mass of the disk with the
diameters0 is denoted bym0. The bottom of the system is
made rough by attaching the disks with the intervals0, and
we employ the periodic boundary condition in the horizontal
direction.

Piles are formed by letting the system run under gravity
with the accelerationg from initial configurations until all
the disks stop moving.

The disk at the positionxstd with massm follows the
Newtonian equation

mẍstd = Fstd, s1d

where the forceFstd consists of the gravitational and contact
forces from the neighboring disks in contact. We also use the
“viscous equation”

gẋstd = Fstd s2d

for some cases to examine the effect of friction because the
system that follows Eq.(2) is stuck as soon as the force
balance is achieved and is more affected by the friction.

The two particlesi and j at xistd andx jstd with radii r i and
r j, respectively, are in contact when the overlapdi j given by

di j = r i + r j − uxi − x ju s3d

is positive. Then the particlej exerts forceF i j on particlei,

F i j = F i j
n + F i j

t , s4d

whereF i j
n andF i j

t are the normal and tangential components
of the force:

F i j
n = kndi j n̂i j − gnvi j

n , s5d

F i j
t = − ktDsij t̂i j − gtvi j

t . s6d

Here, n̂i j and t̂i j are the normal and tangential unit vectors,
respectively;Dsij is the tangential displacement of the con-
tact points after the contactvi j

n svi j
t d is the normal(tangential)

relative velocitykn sktd is the normal(tangential) elastic con-
stant, andgn sgtd is the normal(tangential) damping con-
stant. Note that we assume no threshold for the disks to slip
during the contact in Eq.(6), which corresponds to the case
with an infinite-friction coefficient. In the case of the fric-
tionless disk, we simply setF i j

t =0.
In the actual simulations, we usegn=2ÎknfÎm0g for the

frictionless case andkt=0.2kn andgn=gt=2ÎknfÎm0g for the
frictional case. In the simulations with the viscous equation
(2), we takeg=5fm0

Îg/s0g with gn=gt=0 in Eqs.(5) and
(6).

III. STATIC STRUCTURE OF PILES

First, we study the isostaticity of granular pile formed
through several procedures.

Rigorous verification of isostaticity is not simple, but as
has been discussed already, if a structure is isostatic, the
average coordination numberz should take a specific value
depending upon a type of grains in the pile:z=2d for a pile
of frictionless spherical grains andz=d+1 for a pile of fric-
tional grains. We will usez as a scale that measures how
close a pile structure is to the isostaticity.

We perform molecular dynamics simulations to construct
piles of frictionless and frictional disks using several proce-
dures. We try two types of initial configurations: the triangu-
lar lattice with the lattice constants0 and the random con-
figuration; the triangular lattice is not a regular lattice
because the disks located at the lattice points are polydis-
perse. The random configurations are prepared by randomly
arranging disks with an area fraction of approximately 0.6.

Simulations to form piles start from these configurations
with zero particle velocity and finish when the kinetic energy
of each disk becomes negligibly small—namely, smaller than
10−15fm0gs0g. The number of disks,N, is 400 and the system
size is 20s0 in the horizontal direction; thus, the number of
layers in depth is 20 on average. We also try both Eqs.(1)
and (2) for the time development.
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Figure 1(a) shows thekn dependence of the coordination
numberz for the frictionless disks. It can be seen that the
results do not depend on the preparation procedures very
much andz converges to a number very close to 4 in the
large-kn limit for both initial configurations and time devel-
opments. Thekn dependence is well represented by the
power law

z− z̀ ~ kn
−a, s7d

as shown in the inset of Fig. 1(a). The parametersz̀ anda
are tabulated in Table I.

As for the case of frictional disks, the results are shown in
Fig. 1(b). There are two things to be noted in comparison

with the frictionless case:(i) the discrepancy among different
preparation procedures is larger in the frictional case and(ii )
the limiting values of the coordination number are substan-
tially different from 3—i.e., the value for the isostatic struc-
ture of the frictional grain in two dimensions(Table I).

There seems to be, however, the tendency that the limiting
value of the coordination numberz̀ becomes closer to 3 in
the case where the friction may produce a more random pile
configuration—namely, from the Newtonian equation with
triangular lattice initial configurations to the viscous equation
with random initial configuration.

These results should be compared with those by Silbertet
al. [3]. They also constructed granular piles using the DEM
and concluded that the piles of frictionless spheres become
isostatic in the rigid limit but that of frictional spheres does
not become isostatic.

The major difference between the present work and that
of Silbert et al. lies in the following points: Silbertet al. [3]
studied the three-dimensional systems of monodisperse
spheres with a finite friction constant that follows the New-
tonian equation while we investigate the two-dimensional
system of polydisperse disks with infinite-friction constant
that follows the Newtonian or viscous equation. Both agree
in the point that the pile structure in the frictional systems
does not become isostatic in the same way as it does in the
frictionless system, but our results suggest that isostaticity is
achieved even for a frictional system in a certain limiting
situation where the friction becomes very effective.

To examine how this discrepancy arises, we plot the dis-
tribution of the ratioz of the tangential force to the normal
force at each contact. The comparison between the pile
formed via the Newtonian equation and the pile via the vis-
cous equation from the random initial configurations is given
in Fig. 2 for the disk elasticitykn=106fm0g/s0g, in which
case the coordination numbers of the piles arez=3.11 for the
Newtonian equation andz=3.06 for the viscous equation.
For both cases we use random initial configurations. One can
see that the pile by the viscous equation contains more con-
tacts with a very large value ofz, while the pile by the
Newtonian equation has only contacts withz smaller than 10
even though the infinite-friction coefficient allows any value
of z. This is because of the inertia effect in the Newtonian

FIG. 1. The coordination numberz for various elastic constants
kn for a frictionless pile(a) and frictional pile(b). The marks rep-
resent the pile preparation procedure: the Newtonian equation with
the triangular lattice initial configuration(1), the Newtonian equa-
tion with the random initial configuration(3), the viscous equation
with the triangular lattice initial configuration(* ), and the viscous
equation with the random initial configuration(h). Each mark rep-
resents the average of 6–12 realizations. The insets showz− z̀ vs kn

in the log-log scale withz̀ listed in Table I.

TABLE I. The limiting coordination numbersz̀ and the expo-
nentsa for various preparation procedures.

Equation
of motion Initial configuration

Frictionless Frictional

z̀ a z̀ a

Newtonian Triangular lattice 3.97 0.68 3.15 0.49

Random configuration 3.98 0.65 3.09 0.47

Viscous Triangular lattice 3.97 0.63 3.06 0.60

Random configuration 3.97 0.64 3.04 0.46

FIG. 2. The distribution for the ratioz of the tangential force to
the normal force in the piles produced by the viscous equation(1)
and that by Newtonian equation(h) from the random initial con-
figurations with the disk elasticitykn=106fm0g/s0g. The average
coordination numbers arez=3.06 for the pile by the viscous equa-
tion and z=3.11 for that by the Newtonian equation. Each plot
represents average over about ten realizations.

ISOSTATICITY AND MECHANICAL RESPONSE OF… PHYSICAL REVIEW E 70, 051309(2004)

051309-3



equation that the grains undergo further slip even after force
balance is achieved, eliminating contacts with a large force
ratio.

If we use a finite value for the friction coefficient, some of
the contacts in the pile via the viscous equation would slip to
make the pile denser. This would result in a larger average
coordination number, which means the pile structure be-
comes further away from isostatic.

From these observations, we conclude that the infinite
friction coefficient and the viscous equation for the time de-
velopment in the pile forming process from a random initial
configuration makes the friction very effective; as a result,
the pile becomes so decompacted that it becomes nearly iso-
static.

IV. MECHANICAL RESPONSE OF PILES

Now, we study the mechanical response of the frictionless
and frictional piles to the external perturbation and see how
the response changes as the pile becomes closer to isostatic.
The perturbation is given by displacing one of the disks at-
tached at the floor bydr0 in the upward direction very
slowly, and we observe the displacement of theith disk dr i
caused in the pile by it.

In order to examine the properties of a given contact net-
work, the size of the external displacement is taken to be
small enough that the perturbation does not cause any change
in the connectivity of the contact network in the pile. In the
simulation, we take the external displacement asdr0
=s0,m0/knd—namely, the order of disk deformation. For
such small external displacement, we have checked that the
contact network in the pile does not change, anddr i is pro-
portional todr0. Thus the relative displacementdi defined by

di ;
dr i

udr0u
s8d

does not depend onudr0u.
The initial piles are prepared by the way described in the

previous section with the random initial configuration and
Newtonian equation. The system size is 60s0 in the horizon-
tal direction and the number of disks,N, is 1200; thus, the
average number of layers in the depth is 20.

Examples of the pile response to the perturbation are
shown in Fig. 3. The solid disks in the bottom layer are fixed
except one at the center marked with an arrow, which disk is
displaced upward. The directions and distances of the dis-
placements of the disks in the pile are shown by the arrows:
they denote the displacementsuddiuù1, 0.5ø uddiuø1, and
0.1ø uddiuø0.5. The disks that move less than 0.1dr0 are not
marked. One can see the effects of the perturbation extend
over long distance in the upper case—namely, the friction-
less pile close to isostaticity—while the effects decay within
a short distance in the lower pile of frictional disks.

A. Total longitudinal response of displacement

As a measure of response to the perturbation, we define
the total response of displacement in they direction,Dy, or
the total longitudinal response, as

Dy ; o
i=1

N U dyi

dy0
U = o

i=1

N

udy,iu, s9d

wheredyi is they component of the displacement for theith
disk. This quantity should be finite if the response is confined
within a finite region, but can diverge in the infinite system if
the response extends to infinity.

The results are shown in Fig. 4(a), where the total re-
sponseDy is plotted as a function ofkn with which the ex-
amined piles are formed by the Newtonian equation from the
random initial configuration.

The marks(’s (j’s) in Fig. 4(a) denote the total response
Dy of the frictionless(frictional) disks in the frictionless
(frictional) piles, respectively.

In addition to these, we examine the frictional response to
the perturbation in the frictionless piles(h’s); namely, the
response is calculated using the frictional interaction be-
tween disks, although the pile itself is prepared using the
frictionless interaction. Thus the pile structure has larger co-

FIG. 3. (Color online) The mechanical response caused by the
small displacement of a disk at the bottom[denoted by an open
(red) circle with a dark gray(red) arrow] in the frictionless pile
(upper) and in the frictional pile(lower) with kn=106fm0g/s0g. The
dark gray (red), light gray (green), and black arrows denote the
displacement direction of the disks that move by the distancedr i

ùdr0, 0.5dr0ødr i ,dr0, and 0.1dr0ødr i ,0.5dr0, respectively.

FIG. 4. The total longitudinal displacementDy caused by the
perturbation in the frictionless pile((), in the frictional pile(j),
and for the frictional response in the piles formed through friction-
less dynamics(h; see text). (a) Dy vs the elastic constantkn. (b)
The same dataDy are plotted vs the average coordination number of
the pile, z. Each plot represents an average over about 350
realizations.
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ordination numbers than that of real frictional piles with the
same elastic constantkn.

In Fig. 4(b), the same data are plotted against the coordi-
nation numberz of the pile. One can see that the total re-
sponse of the frictionless pile tends to diverge asz ap-
proaches 4, while it remains finite for the frictional pile as
z→3. It is interesting to see that the frictional responses of
the frictionless piles are almost on the same curve with the
frictional responses of the frictional piles when they are plot-
ted againstz, which suggests that the coordination number
characterizes the mechanical response of the pile very well.

B. Spatial variation of the absolute value of the longitudinal
response

To understand the diverging total responses in the fric-
tionless isostatic pile, we plot the averaged behavior of the
spatial variation of absolute value of longitudinal response

d̂ysrd defined by

d̂ysrd ; Ko
i=1

N

udy,iudsr − r idL , s10d

where k¯l denotes the statistical average. This quantity is
related toDy by

Dy =E E drd̂ysrd. s11d

In actual calculations, the spatial variation is calculated on a
grid with mesh spacings0 and the average is taken over a
few hundreds realizations.

The results are shown in Fig. 5, where the contours of

d̂ysrd’s are plotted in thex-y plane with a color code. The
perturbation is applied atsx,yd=s0,0d.

We look at the cases withkn=103,104,106fm0g/s0g, for
both the frictionless and frictional piles; the coordination
numberz=4.86,4.17,3.98, forkn=103,104,106fm0g/s0g, re-
spectively, for the frictionless pile, andz=3.75,3.31,3.12 for

the frictional pile. The piles withkn=106fm0g/s0g are closer
to isostatic than those withkn=103fm0g/s0g for both the fric-
tionless and frictional piles.

Let us examine the frictionless case first. The response in
the pile withkn=103fm0g/s0g, which is away from isostatic,
decays quickly as it departs from the point of perturbation.
On the other hand, the situation is quite different for the pile
with kn=106fm0g/s0g, which is close to isostatic: the re-
sponse spreads in a fanlike shape and does not decay along
they axis withx=0. If one looks along the line parallel to the
x axis with constanty, one sees a plateau region where the
response is constant. This plateau region, which seems to
extend to infinity, is responsible for the diverging behavior of
the total responseDy.

On the other hand, in the case of a frictional pile with
kn=106fm0g/s0g, there is no tendency to develop a plateau
region, although the response is larger than that for the pile
of kn=103fm0g/s0g.

C. Averaged displacement-displacement response function

Finally, we present the displacement-displacement re-
sponse functionDsrd for this external perturbation:

Dsrd =Ko
i=1

N

didsr − r idL . s12d

The average is taken over a few hundreds realizations and
the spatial dependence is calculated on a grid with mesh size
s0.

The displacement-displacement response function has
been shown to be equal to the force-force response function
for a frictionless isostatic structure[7], but it should be noted
that this correspondence does not hold in other cases.

The results are shown in Figs. 6 and 7 for the frictionless
and frictional piles, respectively, forkn=103,104,106

fm0g/s0g.
Dxsrd is positive for x.0 and negative forx,0 while

Dysrd is mostly positive when it is averaged.
For both the frictionless and frictional piles, the region

where DsrdÞ0 is larger for the pile whose coordination

FIG. 5. (Color online) The contour
plots of the averaged absolute value of

the longitudinal responsed̂ysx,yd in the
frictionless piles(a) and in the frictional
piles (b) with kn=103,104,106fm0g/s0g.
The plots are averaged over a few hun-
dreds realizations.
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numberz is smaller—namely, for the pile that is closer to
isostatic—but the tendency is much more profound in the
frictionless piles.

It should be noted that the wayDysrd extends is very

different from that ofd̂ysrd, especially in the frictionless pile
close to isostatic. The response functionDysrd propagates in
the y direction with the double-peaked structure when one
sees it along a line parallel to thex axis with constanty,

while d̂ysrd develops a plateau region.
This comparison shows that the response to the perturba-

tion is not actually small in the “low-response region” of
Dysrd between the two peaks for the frictionless isostatic pile,
but the large response varies from sample to sample and they
are averaged out to makeDysrd small.

The way this double-peaked structure inDysrd develops as
the frictionless pile approaches isostatic can be seen in the
right column of Fig. 6. The corresponding plots for the fric-
tional case in the right column of Fig. 7 show smoother
structure and do not seem to develop the double-peaked
structure as the pile becomes isostatic.

V. SUMMARY

We have investigated the structure and mechanical re-
sponse of two-dimensional piles of disks with various disk

elasticities. The piles are formed through a several deposition
procedures under gravity.

As for the structure, we have shown the following: The
piles of frictionless disks become isostatic when the disks are
very hard and they are not very sensitive to the preparation
procedure, which is consistent with the conjecture that the
pile of rigid grains is isostatic. On the other hand, for the
piles of frictional disks with infinite friction, the structure
depends on the preparation process. If the pile is formed
from a triangular lattice with the inertia following the New-
tonian equation, the pile structure seems to be distinctively
different from the isostatic one even in the rigid limit, as has
been found in previous work on the three-dimensional sys-
tem [3]. We have found, however, that the pile of frictional
disks becomes very close to the isostatic one in the rigid
grain limit when we employ the deposition process where
infinite friction is effective; namely, the viscous equation is
used for the time development for the disks with infinite
friction constant from random initial configurations.

The role of friction for the frictional isostaticity is dem-
onstrated by examining the distribution of the ratio of the
normal force to the tangential force. In the pile that is close
to isostaticity with frictional disks, the distribution ofz ex-
tends to a very large value of the order of 103. This suggests
that frictional isostaticity is realized only in the cases where

FIG. 6. (Color online) The contour
plots of the averaged displacement-
displacement response functionDsx,yd
in the frictionless piles with kn

=103,104,106fm0g/s0g: Dx in the left
column andDy in the right column. The
plots are averaged over a few hundreds
realizations.

FIG. 7. (Color online) The contour
plots of the averaged displacement-
displacement response function in the
frictional piles with kn

=103,104,106fm0g/s0g: Dx in the left
column andDy in the right column. The
plots are averaged over a few hundreds
realizations.
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the exceptionally large friction coefficient is effective, and
most of the real stable piles with modest friction should be
hyperstatic with history-dependent forces even in the rigid
limit.

We have also investigated the mechanical response of the
piles of frictionless and frictional disks with special attention
to the isostaticity of the pile structure. We have examined the
disk displacement caused by moving one of the disks at the
bottom of the pile by an infinitesimally small distance. It has
been shown that, for the frictionless pile with isostatic struc-
ture, the response does not decay as it departs from the point
of perturbation, and the total sum of the disk displacement
diverges as the pile becomes isostatic, while the response
decays quickly in the pile with structure far from isostaticity.
It is found that the averaged longitudinal responseDy be-
comes double peaked in the isostatic frictionless pile.

As for the frictional pile, the response function always
decays in a finite distance and the longitudinal response re-
mains single peaked, which behavior does not change dras-
tically as the structure approaches isostaticity.

The double-peaked structure in the displacement-
displacement response function for the frictionless isostatic
pile may be compared with the hyperbolic stress propagation
in the granular system[11,12] due to the equivalence
between the stress-stress response function and the
displacement-displacement response function in the friction-
less isostatic pile[7]. The single-peaked structure, on the

other hand, may correspond to the diffusive stress propaga-
tion, but this correspondence is indirect because there is no
equivalence between the displacement response and the
stress response in the frictional or nonisostatic pile.

It is interesting to note that, in the isostatic piles, the spa-
tial distribution of the averaged response of disk displace-
mentDy is clearly different from that of the absolute value of

disk displacementd̂y; the former develops the double-peaked
structure while the latter shows the plateau structure.
Namely, in the region between the two peaks where the av-
erage displacement is small, the actual displacement re-
sponse is not small in each sample, but just are random and
averaged out. This means that the averaged displacement re-
sponse in the isostatic pile appears to propagate like a wave
following a hyperbolic equation, but the way that displace-
ment response propagates in each sample is quite compli-
cated and does not look like a wave(Fig. 3). A similar fea-
ture has been reported in a simplified lattice model of
isostatic structure[8]: an individual response shows random
behavior and its distribution is extremely broad, but the av-
erage shows wavelike propagation.
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